Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 26(2): 165-177, May. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-220213

RESUMO

Emergence of Candida auris, a multidrug-resistant yeast, demonstrates the urgent need for novel antifungal agents. Human antimicrobial peptides (AMPs) are naturally occurring molecules with wide spectrum antimicrobial activity, particularly against a variety of fungi. Therefore, this study examined the antifungal activity of seven different human AMPs against C. auris following the CLSI guidelines. The antifungal activity was further assessed using time kill curve and cell viability assays. For combination interaction, effectiveness of these peptides with three antifungals, fluconazole, amphotericin B, and caspofungin was done following standard protocols. To elucidate the antifungal mechanism, the effects of peptides on membrane permeability were investigated using propidium iodide staining method and confocal imaging. Antifungal susceptibility results showed that all the examined peptides possessed fungicidal effect against C. auris at different levels, with human β-defensin-3 being the most potent antifungal with MIC values ranging from 3.125 to 12.5 µg/ml. Time kill curves further confirmed the killing effect of all the tested peptides. Viability assay showed a significant decrease in the percentage of viable cells exposed to different inhibitory and fungicidal concentrations of each peptide (p < 0.01). Furthermore, peptides showed mostly synergistic interaction when combined with conventional antifungal drugs, with caspofungin showing 100% synergy when combined with different AMPs. As antifungal mechanism, peptides disrupted the membrane permeability at concentrations that correlated with the inhibition of growth. Overall, the findings of this study point towards the application of the tested peptides as a monotherapy or as a combination therapy with antifungal drugs to treat multidrug-resistant C. auris infections.(AU)


Assuntos
Humanos , Peptídeos Catiônicos Antimicrobianos , Candida , Permeabilidade da Membrana Celular , Antifúngicos , Pesquisa
2.
Int Microbiol ; 26(2): 165-177, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36329309

RESUMO

Emergence of Candida auris, a multidrug-resistant yeast, demonstrates the urgent need for novel antifungal agents. Human antimicrobial peptides (AMPs) are naturally occurring molecules with wide spectrum antimicrobial activity, particularly against a variety of fungi. Therefore, this study examined the antifungal activity of seven different human AMPs against C. auris following the CLSI guidelines. The antifungal activity was further assessed using time kill curve and cell viability assays. For combination interaction, effectiveness of these peptides with three antifungals, fluconazole, amphotericin B, and caspofungin was done following standard protocols. To elucidate the antifungal mechanism, the effects of peptides on membrane permeability were investigated using propidium iodide staining method and confocal imaging. Antifungal susceptibility results showed that all the examined peptides possessed fungicidal effect against C. auris at different levels, with human ß-defensin-3 being the most potent antifungal with MIC values ranging from 3.125 to 12.5 µg/ml. Time kill curves further confirmed the killing effect of all the tested peptides. Viability assay showed a significant decrease in the percentage of viable cells exposed to different inhibitory and fungicidal concentrations of each peptide (p < 0.01). Furthermore, peptides showed mostly synergistic interaction when combined with conventional antifungal drugs, with caspofungin showing 100% synergy when combined with different AMPs. As antifungal mechanism, peptides disrupted the membrane permeability at concentrations that correlated with the inhibition of growth. Overall, the findings of this study point towards the application of the tested peptides as a monotherapy or as a combination therapy with antifungal drugs to treat multidrug-resistant C. auris infections.


Assuntos
Antifúngicos , Candida auris , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Caspofungina/farmacologia , Peptídeos Antimicrobianos , Candida , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
3.
Sci Rep ; 10(1): 1162, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980703

RESUMO

Emergence of Candida auris has been described as a global health threat due to its ability to cause invasive infections with high mortality rate and multidrug resistance. Novel drugs and therapies are required to target this organism and its pathogenicity. Anti-virulence approach and combination therapy have been proposed as alternatives in recent years. This study evaluated the virulence factors in C. auris, combination antifungal activity of phenolic compounds with antifungal drugs and determined effect of the most active compound on positive pathogenicity markers of C. auris. Antifungal susceptibility profile of 25 clinical isolates of C. auris against antifungal agents as well as against phenolic compounds was obtained using CLSI guidelines. Combination of the most active phenolic compound with antifungal drugs was determined. Effect of carvacrol on the virulence factors was also studied. Carvacrol was the most active phenol with median MIC of 125 µg/ml and its combination with fluconazole, amphotericin B, nystatin and caspofungin resulted synergistic and additive effects in 68%, 64%, 96% and 28%, respectively. Combination also reduced the MIC values of the drugs. All test strains showed adherence ability to epithelial cells and 96% of strains produced proteinase. None of the strains produced hyphae and phospholipase. At low concentrations, carvacrol significantly inhibited the adherence ability and proteinase production (both p < 0.01). Carvacrol has antifungal and anti-virulence activity against C. auris. It also showed an enhanced antifungal activity in combination with antifungal agents. Therefore it has potential to be developed into a novel antifungal agent.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Monoterpenos/farmacologia , Fenóis/farmacologia , Antifúngicos/administração & dosagem , Candida/patogenicidade , Candida albicans/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Cimenos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Eugenol/análogos & derivados , Eugenol/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Timol/farmacologia , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...